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1.     f(x) = 2x3 – 8x2 + 7x – 3. 
 
Given that x = 3 is a solution of the equation f(x) = 0, solve f(x) = 0 completely. 

(5) 
 
 

2. (a)  Show, using the formulae for ¦ r  and ¦ 2r , that 
 

¦
 

��
n

r
rr

1

2 )146(  = n(n + 2)(2n + 1). 

 (5) 

(b)  Hence, or otherwise, find the value of ¦
 

��
20

11

2 )146(
r

rr . 

 (2) 
 
 

3.  The rectangular hyperbola, H, has parametric equations x = 5t, y = 
t
5 , t ≠ 0. 

 
(a)  Write the cartesian equation of H in the form xy = c2. 

(1) 
 
Points A and B on the hyperbola have parameters t = 1 and t = 5 respectively. 
 
(b)  Find the coordinates of the mid-point of AB. 

(3) 
 

 
4.  Prove by induction that, for n � ℤ+, 

 

¦
 �

n

r rr1 )1(
1  = 

1�n
n . 

 
 (5) 

 
 

5.                 f(x) = 3�x + 
x�

18  – 20. 

 
(a)  Show that the equation f(x) = 0 has a root α in the interval [1.1, 1.2]. 

(2) 

(b)  Find f ′(x). 
(3) 

(c)  Using x0 = 1.1 as a first approximation to α, apply the Newton-Raphson procedure once 
to f(x) to find a second approximation to α, giving your answer to 3 significant figures. 

(4) 
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6. A series of positive integers u1, u2, u3, ... is defined by 
 

u1 = 6 and un + 1 = 6un – 5, for n t 1. 
 
Prove by induction that un = 5 × 6n – 1 + 1, for n t 1. 

(5) 

 

7. Given that X = ¸̧
¹

·
¨̈
©

§
�� 11

2 a
, where a is a constant, and a ≠ 2, 

 
(a)  find X–1 in terms of a. 

(3) 
 
Given that X + X–1 = I, where I is the 2 × 2 identity matrix, 
 
(b)  find the value of a. 

(3) 
 
 
8. A parabola has equation y2 = 4ax, a > 0. The point Q (aq2, 2aq) lies on the parabola. 
 

(a)  Show that an equation of the tangent to the parabola at Q is 
 

yq = x + aq2. 
(4) 

 
This tangent meets the y-axis at the point R. 
 
(b)  Find an equation of the line l which passes through R and is perpendicular to the tangent 

at Q. 
(3) 

(c)  Show that l passes through the focus of the parabola. 
(1) 

(d)  Find the coordinates of the point where l meets the directrix of the parabola. 
(2) 
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9. Given that 1z = 3 + 2i and 2z  = 
1

i512
z
� , 

 
(a)  find 2z  in the form a + ib, where a and b are real. 

(2) 

(b)  Show, on an Argand diagram, the point P representing 1z  and the point Q representing 2z . 
(2) 

(c)  Given that O is the origin, show that �POQ = 
2
S . 

(2) 
 

The circle passing through the points O, P and Q has centre C. Find 
 
(d)  the complex number represented by C, 

(2) 

(e)  the exact value of the radius of the circle. 
(2) 

 

10.          A = ¸̧
¹
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¨̈
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230
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¹

·
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¸̧
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¨
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2
1

2
1

. 

 
(a)  Describe fully the transformations described by each of the matrices A, B and C. 

(4) 
 
It is given that the matrix D = CA, and that the matrix E = DB. 
 
(b)  Find D. 

(2) 

(c)  Show that E = ¸̧
¹

·
¨̈
©

§�
33
33

. 

 (1) 
 

The triangle ORS has vertices at the points with coordinates (0, 0), (–15, 15) and (4, 21). This 
triangle is transformed onto the triangle OR′S′ by the transformation described by E. 
 
(d)  Find the coordinates of the vertices of triangle OR′S′. 

(4) 

(e)  Find the area of triangle OR′S′ and deduce the area of triangle ORS. 
(3) 

 
TOTAL FOR PAPER: 75 MARKS 

END 
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January 2009 

6667 Further Pure Mathematics FP1 (new) 
Mark Scheme 

 
Question 
Number Scheme Marks 
 

1  
 

 

 
x – 3 is a factor 

 
 
B1 

 f(x) = 2( 3)(2 2 1)x x x− − +   M1 A1 
 

 
 Attempt to solve quadratic i.e. 2 4 8

4
x ± −
=  

 
M1 

 

 1 i
2

x ±
=  

 
A1 

[5] 

 
Notes: 
 
First and last terms in second bracket required for first M1 
Use of correct quadratic formula for their equation for second M1 
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Question 
Number Scheme Marks 

 
 

2 (a) 
 

 

 
 

26 4 1 6 ( 1)(2 1) 4 ( 1),
6 2
n nr r n n n n+ − = + + + + −∑ ∑ ∑  

 
 
 
M1 A1, B1 
 

 
 

2(12 18 6 12 12 6)
6
n n n n= + + + + −   or ( 1)(2 1) (2 1)n n n n n+ + + +  

 
M1 

 

 2 2(12 30 12) (2 5 2) ( 2)(2 1)
6
n n n n n n n n n= + + = + + = + + ∗           

 
A1 

 (5) 

   

(b) 20
2

1
(6 4 1)

r
r r

=

+ −∑ - 
10

2

1
(6 4 1)

r
r r

=

+ −∑  = 20 22 41 10 12 21× × − × ×  
 
M1 

 

                                      = 15520 
 
 

A1  
(2) 
[7] 

 
Notes: 
 
(a) First M1 for first 2 terms, B1 for –n 
Second M1 for attempt to expand and gather terms. 
Final A1 for correct solution only 
 
(b) Require (r from 1 to 20) subtract (r from 1 to 10) and attempt to substitute for M1 
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Question 
Number Scheme Marks 

 
3 (a) 
 

 
225 5xy = =   or c =± 5 

 

 
 
B1 (1) 

   

(b)  
A has co-ords (5, 5) and B has co-ords (25, 1) 
 

 
B1 
 

 Mid point is at (15, 3) 
 
 

M1A1 
(3) 
[4] 

 
 
Notes: 
 
(a) 25=xy  only B1, 252 =c  only B1, 5=c  only B1 
 
(b) Both coordinates required for B1 
Add theirs and divide by 2 on both for M1 
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Question 
Number Scheme Marks 

 
4 

 

When n = 1, LHS = 1 1
1 2 2

=
×

, RHS = 1 1
1 1 2

=
+

. So LHS = RHS and result true for 

n = 1 
 

 
 
B1 
 
 

 
Assume true for n = k;  

1

1
( 1) 1

k

r

k
r r k=

=
+ +∑  and so 

1

1

1 1
( 1) 1 ( 1)( 2)

k

r

k
r r k k k

+

=

= +
+ + + +∑  

                                           

M1 
 
 
 

                                            
1

1

1 ( 2) 1
( 1) ( 1)( 2)

k

r

k k
r r k k

+

=

+ +
=

+ + +∑ =
2 22 1 ( 1)

( 1)( 2) ( 1)( 2)
k k k
k k k k

+ + +
=

+ + + +
= 1

2
k
k
+
+

 

                                             

M1 A1  
 

           
 

                       and so result is true for n = k + 1 (and by induction true for n +∈Z ) B1  
[5] 

 
 
Notes: 
 
Evaluate both sides  for first B1 
Final two terms on second line for first M1 
Attempt to find common denominator for second M1. 
Second M1 dependent upon first. 

2
1

+
+

k
k  for A1 

‘Assume true for kn = ’and ‘so result true for 1+= kn ’ and correct solution for final B1 
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Question 
Number Scheme Marks 

 
5 (a) 
            

 
attempt evaluation of f(1.1) and f(1.2)  (– looking for sign change) 

 
M1 

 f( 1.1) = 0.30875 ,  f( 1.2) = -0.28199  Change of sign in f(x) ⇒ root in the interval 
 

A1 
(2) 

   

 
(b) 

 

1 1
2 213f ( ) 9

2
x x x− −′ = −  

 
M1 A1 A1 

(3) 
   

(c) 
 

 f (1.1) = 0.30875..    f ′ (1.1) = -6.37086… B1  B1 

 
 
 

1
0.30875...1.1
6.37086..

x = −
−

 
 
M1 

 
 

    = 1.15(to 3 sig.figs.) 
 

A1 
(4) 
[9] 

 
Notes: 
 
(a) awrt 0.3 and -0.3 and indication of sign change for first A1 
(b) Multiply by power and subtract 1 from power for evidence of differentiation and 
award of first M1 
(c) awrt 0.309 B1and awrt -6.37 B1 if answer incorrect 
Evidence of Newton-Raphson for M1 
Evidence of Newton-Raphson and awrt 1.15 award 4/4
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Question 
Number Scheme Marks 

 
6 

 
At n =1, 05 6 1 6nu = × + =  and so result true for n = 1 

 
B1 

  
Assume true for n = k;  15 6 1k

ku −= × +  ,and so 1
1 6(5 6 1) 5k

ku −
+ = × + −  

 
M1, A1  

 
 

1 5 6 6 5k
ku +∴ = × + −    1 5 6 1k

ku +∴ = × +  A1 

 
 
 
 
 
 

and so result is true for n = k + 1 and by induction true for 1n ≥  
 
 

 

B1 
[5] 

 
Notes: 
6 and so result true for n = 1 award B1 
Sub ku  into 1+ku  or M1 and A1 for correct expression on right hand of line 2 
Second A1 for 1 5 6 1k

ku +∴ = × +  
‘Assume true for n = k’ and ‘so result is true for n = k + 1’ and correct solution for final 
B1 
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Question 
Number Scheme Marks 

   

7 (a) 
 

                       The determinant is a - 2 
 

M1 
 

 
                           1 11

1 22
a

a
− − −⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

X
     

          
 

 

M1 A1 
(3) 

 
(b) 

 
                           

1 0
0 1
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

I
   
   

 

 

 
B1 
 

 
 
 

Attempt to solve 12 1
2a

− =
−

, or 0
2

aa
a

− =
−

, or 11 0
2a

− + =
−

, or 21 1
2a

− + =
−

 

 

 
 
M1 

 
 
 
 
 

To obtain a =3 only 
             
 
 

 

 
A1 cso 

(3) 
[6] 

 

 Alternatives for (b) 
If they use 2X + I = X they need to identify I for B1, then attempt to solve suitable 
equation for M1 and obtain a = 3 for A1 
If they use 2 -1X + X = O  , they can score the B1then marks for solving 
If they use 3X + I = O they need to identify I for B1, then attempt to solve suitable 
equation for M1 and obtain a = 3 for A1 
 

 

 
Notes: 
 
(a) Attempt ad-bc for first M1 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
21

1
det
1 a

 for second M1 

(b) Final A1 for correct solution only
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Question 
Number Scheme Marks 

 
8 (a) 
 

 

    
1 1
2 2

dy a x
dx

−=                      or d2 4
d
yy a
x
=  

 
 
M1 

 
 
 

The gradient of the tangent is 1
q

 
 
A1 

 
 
 The equation of the tangent is 212 ( )y aq x aq

q
− = −  

 
M1 

 
 
          

So yq = x + 2aq                                                               * 
 

 
A1 

(4) 
(b) 

          
R has coordinates ( 0, aq) 
 

B1 
 

 
 

The line l has equation y – aq = -qx 
 

M1A1 
(3) 

 
(c) 

 
When y = 0  x = a (so line l passes through (a, 0)  the focus of the parabola.) 
 

B1 
(1) 

(d) 
 
          

Line l  meets the directrix when x = -a: Then y = 2aq. So coordinates are ( -a, 2aq) 
 
 

M1:A1 
(2) 

[10] 
 
Notes: 
 

(a) 
aq
a

dx
dy

2
2

=  OK for M1 

Use of cmxy += to find c OK for second M1 
Correct solution only for final A1 
 
(b) -1/(their gradient in part a) in equation OK for M1 
 
(c) They must attempt y = 0 or  x = a  to show correct coordinates of R for B1 
 
(d) Substitute ax −=  for M1. 
Both coordinates correct for A1. 
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Question 
Number Scheme Marks 

   

9 (a) 
 
 

 
(b) 

 
 
 
 
 
  
 
 

(c) 
 
 
 

OR 
 
 
 

  
 
 

(d) 
 
 

  
 

(e) 
 
 

 

  

 
M1 
A1  

(2) 
 

 
 
 
 
 
 

B1, B1ft  
(2) 

 

 
 
 
 
 
M1 
 
A1 

(2) 
 
 

M1 
 
A1               
              (2) 
 
M1 
A1 

(2) 
[10] 

 
Notes: 
 

(a) 
i
i

23
23

−
−

×  for M1 

 
(b) Position of points not clear award B1B0 
 
(c) Use of calculator / decimals award M1A0 
 
(d) Final answer must be in complex form for A1 
 
(e) Radius or diameter for M1 
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Question 
Number Scheme Marks 

   
 
10 (a) 
 

A represents an enlargement scale factor 3 2  (centre O) M1 A1 
 

 B represents reflection in the line y = x B1 
 
 C represents a rotation of 

4
π , i.e.45° (anticlockwise) (about O) 

B1 
(4) 

   
(b) 

 
 

3 3
3 3

−⎛ ⎞
⎜ ⎟
⎝ ⎠

   
      

 
 

M1 A1 
(2) 

   
 

(c) 
 
 

 
3 3
3 3

−⎛ ⎞
⎜ ⎟
⎝ ⎠

   
      

0 1
1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

  
  

= 
3 3
3 3
−⎛ ⎞
⎜ ⎟
⎝ ⎠

    
      

 

 

 
B1 

(1) 
 

   
 

(d) 
 
 

3 3
3 3
−⎛ ⎞
⎜ ⎟
⎝ ⎠

    
      

0 15 4
0 15 21
−⎛ ⎞

⎜ ⎟
⎝ ⎠

     
       

=
0 90 51
0 0 75
⎛ ⎞
⎜ ⎟
⎝ ⎠

      
        

 so (0, 0),  (90 , 0 ) and ( 51 , 75) 

  

 
M1A1A1A1 

(4) 
 

   
 

(e) 
 

 Area of  ∆ OR S′ ′ is 1 90 75 3375
2
× × =  

B1 

          Determinant of E is –18 or use area scale factor of enlargement  
          So area of  ∆ORS  is 3375 18 187.5÷ =  

 
 
 

 

M1A1    (3) 
[14] 

 
Notes: 
 
(a) Enlargement for M1 

23  for A1 
 
(b) Answer incorrect, require CD for M1 
 
(c) Answer given so require DB as shown for B1 
 

(d) Coordinates as shown or written as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
0

,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
90

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
75
51

for each A1 

 
(e) 3375 B1 
Divide by theirs for M1 

 


